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Abstract

In this paper, the authors show how to use Riemann–Hilbert techniques to prove various results, some
old, some new, in the theory of Toeplitz operators and orthogonal polynomials on the unit circle (OPUCs).
There are four main results: the first concerns the approximation of the inverse of a Toeplitz operator by the
inverses of its finite truncations. The second concerns a new proof of the ‘hard’ part of Baxter’s theorem,
and the third concerns the Born approximation for a scattering problem on the lattice Z+. The fourth and
final result concerns a basic proposition of Golinskii–Ibragimov arising in their analysis of the Strong Szegö
Limit Theorem.
© 2005 Elsevier Inc. All rights reserved.

0. Introduction

Let d� be a probability measure on the unit circle � = {z ∈ C : |z| = 1} and let �n = zn +· · ·,
n�0, be the (monic) orthogonal polynomials (OPUCs) associated with d�,

∫
� �m(z) �n(z) d� =

0, m �= n, m, n�0 (see [20]). Let � = (�n)n∈Z+ denote the vector of Verblunsky coefficients
�n = −�n+1(0), n�0. By Verblunsky’s theorem (see [17]), the map V : d� �→ � is a bijection
from the probability measures on � onto ×∞

j=0 D, where D = {z ∈ C : |z| < 1} is the (open) unit
disc in C. Following Cantero et al. [5], we may, given �, construct a (pentadiagonal) unitary matrix
operator U = U(�) in l2+ = l2(Z+) (the so-called CMV matrix) with the following property:

e0 = (1, 0, . . . )T is a cyclic vector for U, i.e. 〈Uk e0〉−∞<k<∞ = l2+, and the associated spectral
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measure for U is precisely d� = V −1(�). With this construction, Verblunsky’s theorem becomes
a result in spectral/inverse spectral theory: Indeed, let S denote the map from CMV matrices U
to their spectral measures d� on �,

U �−→ d� (0.1)

and let I denote the map from measures d� on � to their associated CMV matrices U = U(V (d�)),

d� �−→ U(V (d�)). (0.2)

Then S and I are inverse to each other. The above correspondence, which is the analog for the unit
circle of the well-known correspondence between measures on the line and Jacobi operators (see
e.g. [9]), divides the study of OPUCs naturally into two parts: the direct problem (equivalently,
the study of the properties of S) and the inverse problem (equivalently, the study of the properties
of I). This is the approach taken in Simon’s new book [17,18]: Part 1 focuses on I and Part 2
focuses on S. The goal of the present paper is to show that the study of the map I is greatly
facilitated by using Riemann–Hilbert (RH) techniques in the spirit of [10]. We will do this by
producing new and transparent RH proofs of some classical and central theorems in the subject:
En route, we will also derive some new results.

Denote by H± the closed subspaces of L2 (�) consisting of functions u whose negative/non-
negative Fourier coefficients are zero, and let P± : L2 (�) → H± be the associated orthogonal
projections. Given a function � ∈ L∞ (�) we define the associated Toeplitz operator with symbol
�, T (�) : H+ → H+, by the formula

T (�) u = P+(� u), u ∈ H+. (0.3)

In terms of the Fourier coefficients �k = �̂ (k) = ∫ �
−� e−ik� �(ei�) d�

2� the Toeplitz operator
becomes a truncated discrete convolution:

T (�) zk =
∞∑

j=0

�j−k zj , z ∈ �, k ∈ Z+. (0.4)

Let T (�)jk = �j−k . Then the Toeplitz matrix
(
T (�)jk

)∞
j,k=0 = (

�j−k

)∞
j,k=0

is the matrix

representation of T (�) in the standard basis
(
zk
)∞
k=0 for H+. For n�0, let Pn =

{∑n
j=0 aj zj

}
denote the subspace of L2 (�) consisting of polynomials of degree less than or equal to n, and
Pn : L2 (�) → Pn the corresponding orthogonal projection. Define the nth truncation of the
Toeplitz operator T (�) to be the map Tn = Tn(�) = Pn T (�)|Pn

.
In the following we will be interested only in symbols�belonging to the so-called Beurling class

W� (compare [17]). The basic definitions are as follows. We call a sequence
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� = (�k)k∈Z a Beurling weight if it has the properties:

(i) �j �1, j ∈ Z,
(ii) �j = �−j , j ∈ Z,

(iii) �j+k ��j �k, j, k ∈ Z.

The Beurling class is defined as

W� =
{
� ∈ L1 (�) :

∑
j∈Z

�j |�j | < ∞
}
.

By standard subadditivity arguments it follows that

A(�) = lim
k→∞

log �k

k
= inf

k∈N

log �k

k
(0.5)

exists. Note, in particular, that A(�)�0 and also that �k �e|k| A(�), k ∈ Z. In case A(�) = 0,
we say that � is a strong Beurling weight. It is easy to see that W� becomes a Banach algebra if
equipped with the norm

‖�‖� =
∑
j∈Z

�j |�j |. (0.6)

Canonical examples are given by the exponential weights �j = �|j |, ��1, and the algebra W �

associated with (strong) Beurling weight �j = (1 + |j |)�, ��0. The space W 0 is the standard
Wiener algebra. Note that W� ⊂ W 0 for any Beurling weight �.

It is a well-known theorem, due to Krein, that if � ∈ W 0, then T (�) is invertible if and only if
�(z) �= 0 for all z ∈ � and wind(�, 0) = 0. In this case, the inverse is given by

T (�)−1 = T

(
1

�+

)
T

(
1

�−

)
, (0.7)

where � = �+ �− is the Wiener–Hopf factorization of �, i.e. �+ extends to a non-vanishing
function analytic in the interior of the unit circle and �− to a non-vanishing function, with
�−(∞) = 1, analytic in the exterior of the unit circle. Said differently,

m(z) =
{

�+(z), |z| < 1,

�−1− (z), |z| > 1,

is the solution of the (scalar) Riemann–Hilbert problem (RHP) (�, v = �) (see below). It is
not difficult to see that, under the above conditions on �, such a factorization exists and that the
extensions are uniquely given by �± = exp{±C(log �)}.

Suppose that � ∈ W�. Let us denote by R� the annulus

R� =
{
z ∈ C : e−A(�) � |z|�eA(�)

}
.

It is then easy to see that � extends to a function analytic in the interior of R� and continuous up
to the boundary. Using basic facts from the Gelfand theory of commutative Banach algebras one
can prove that the spectrum �(�) of � equals �(R�), i.e. if �(z) �= 0 for z ∈ R�, then �−1 ∈ W�.
Furthermore, if in addition to the assumption that � ∈ W� is non-vanishing on R� we impose the
condition that wind(�, 0) = 0, then log � ∈ W�. This follows from the following basic fact, see
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[11]: Let us denote by GB the group of invertible elements of a commutative Banach algebra B
and by G0B the (connected) component in GB containing the identity. Then, G0B coincides with
exp B. Indeed, write �(z) = ∑

j∈Z aj zj and introduce the sequence of rational approximations

�(N)(z) = ∑N
j=−N aj zj . Clearly then �(N) ∈ W�, and �(N) → � in W�. It follows that, for N

sufficiently large, �(N) is non-vanishing on R� with wind(�(N), 0) = 0. Clearly then, for such N,

�(N)(z) = c

∏N
j=1(z − �j )

∏N
j=1(1 − 	j z)

zN
,

where |�j |, |	j | < e−A(�) for all j ∈ {1, . . . , N} and c �= 0 is a constant. From this it is easy to
see that �(N) may be connected to 1 through a continuous path in GW�, i.e. �(N) ∈ G0W�. On
the other hand, clearly


� + (1 − 
)�(N) = �(N) + 
(� − �(N)), 
 ∈ [0, 1],
connects �(N) and � through a continuous path in GW� if N is chosen sufficiently large, and so
� ∈ G0W� = exp W�. We also mention the well-known fact that if b belongs to a Banach algebra
B and f is a function analytic in a domain containing �(b), then f (b) ∈ B.

Consequently, for � ∈ W� with � �= 0 on R�, wind(�, 0) = 0, we have �+, �−, �−1+ ,

�−1− ∈ W�.
We shall need some additional notation. Introduce, for � as above and n�0, the semi-norms

‖�‖�,n =
∑

|k|�n

�k |�k| (0.8)

and also write

|||�|||� = max
{
‖�+‖�, ‖�−‖�, ‖�−1+ ‖�, ‖�−1− ‖�

}
(0.9)

as well as

|||�|||�,n = max
{
‖�+‖�,n, ‖�−‖�,n, ‖�−1+ ‖�,n, ‖�−1− ‖�,n

}
. (0.10)

We will always replace � by 0 in (0.6), (0.8),. . . in case � is the standard Wiener weight.
The first result in this paper is a new proof of the following basic theorem, which is essentially

due to Widom. See [4] for references and further discussion.

Theorem 0.1. Let � be a Beurling weight. Suppose that � ∈ W�, that �(z) �= 0 for all z ∈ R�,
and that wind(�, 0) = 0. Let � = �+ �− be the Wiener–Hopf factorization of �. Then Tn(�) is
invertible for sufficiently large n, and there is a constant c(�) (independent of n) such that∣∣∣Tn(�)−1

jk − T (�)−1
jk

∣∣∣ �c(�) · min
{|||�|||0,n+1−k, |||�|||0,n+1−j

}
(0.11)

for 0�j, k�n. In particular, for any Beurling weight with A(�) > 0,∣∣∣Tn(�)−1
jk − T (�)−1

jk

∣∣∣ �c�(�) · min
{
e−(n+1−k) A(�), e−(n+1−j) A(�)

}
. (0.12)

On the other hand, for Beurling weights which increase on Z+; �j ��k for 0�j < k,∣∣∣Tn(�)−1
jk − T (�)−1

jk

∣∣∣ �c�(�) · min
{
�−1
n+1−k, �

−1
n+1−j

}
. (0.13)
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Remarks. (1) For symbols � which are positive on � standard computations show that Tn(�)−1

exists for all n�0.
(2) Of course, (0.12) is true for all Beurling weights, but is only of interest if A(�) > 0.
This result has many applications. For a recent application to random growth models, see [14].
The second result concerns the relationship between the asymptotic properties of Verblunsky

coefficients and the smoothness of the measures d� on the unit circle. The result is the following
extension of the I-part of Baxter’s theorem (see Section 5).

Theorem 0.2. Let � be a Beurling weight and d�(z) = w(z)
|dz|
2� , a complex measure on the unit

circle with the properties w ∈ W�, w(z) �= 0 for z ∈ R� and wind(w, 0) = 0. Then,∑
n�n0

�n |�n(0)| < ∞, (0.14)

for some n0 = n0(�) sufficiently large.

As in the case of real weights, �n = zn +· · · is the monic polynomial defined by the conditions∫
� �n(z) z−k w(z) |dz| = 0, 0�k�n−1. For complex-valued weights as above, such polynomi-

als may not exist for all n. However, for n sufficiently large such polynomials exist and are unique.
There are two ways to see this. Firstly, a simple computation shows that the polynomial �n exists
and is unique if the Toeplitz operator (Tn−1(w))0� j,k �n−1 is invertible—but as remarked at the
end of Section 4 below this is true for n sufficiently large. On the other hand, if the RHP in Section
5 below has a unique solution Y, then Y11 is the desired (unique) polynomial. The existence of a
unique solution Y for n sufficiently large is proven en route in the calculations of Section 5. Of
course, in case w > 0 (as in Baxter’s theorem), the OPUCs �n exist for all n�0 and we take
n0 = 0 in (0.14).

Whereas the results (but not the methods!) mentioned above are basically classical, our third
result,Theorem 5.3 given in Section 5, is new. It is a further refinement of Baxter’s theorem and may
be regarded as a result about the Born approximation for a scattering problem on Z+. Together
with results from Nevai and Totik [15], one implication of this result is a strengthening (see
Corollary 5.4) of an earlier result of Simon. As it turns out, Simon has now given an independent
proof of this Corollary (see [19]).

Section 1 briefly discusses techniques from the theory of integrable operators and RHPs which
we will need in the sequel. Sections 2–4 contain the proof of Theorem 0.1. In Section 6 we consider
two examples illustrating the sharpness of the results in Section 5. Finally, Section 7 contains a
RH proof of the I-part of a basic theorem of Golinskii–Ibragimov related to the Strong Szegö
Limit Theorem (see Theorem 7.1, et seq.). For a proof of the Strong Szegö Limit Theorem based
on RH techniques, we refer the reader to [8].

1. Integrable operators and Riemann–Hilbert problems

In this section, we give a brief introduction to the theory of integrable operators and their
connection to RHPs. Let � be an oriented contour in C. We say that an operator K acting in
L2 (�) = L2 (�, |dz|) is integrable if it has a kernel of the form

K(z, z′) =
∑N

j=1 fj (z)gj (z
′)

z − z′ , z, z′ ∈ �, (1.1)
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for some functions fi, gj , 1� i, j �N . The action of K in L2 (�) is given by

(Kh)(z) = i�
N∑

j=1

fj (z)
(
H(hgj )

)
(z), h ∈ L2 (�) , z ∈ �, (1.2)

where H denotes the Hilbert-transform,

(Hh)(z) = lim
�→0

1

i�

∫
{z′∈� : |z−z′|>�}

h(z′)
z − z′ dz′, h ∈ L2 (�) , z ∈ �. (1.3)

In case the contour � is such that the operator H is bounded on L2 (�), and if fi, gj ∈ L∞ (�)

for 1� i, j �N , then clearly K defines a bounded operator on L2 (�). Particular examples of
integrable operators began to appear in the 1960s in the context of field theory and statistical
models and some of the important elements of the general theory of such operators were present
in the late 1960s in [16], but the full theory of integrable operators as a distinguished class was
presented only in the early 1990s in [13] (see also [8]).

Integrable operators have many remarkable properties, see [13,8]. In particular, if K is an
integrable operator with kernel as in (1.1), with the property that (1 − K)−1 exists, and (1 −
K)−1 − 1 = R is also a kernel operator, then we learn from [13,8] that R is also an integrable
operator with kernel

R(z, z′) =
∑N

j=1 Fj (z)Gj (z
′)

z − z′ , z, z′ ∈ �, (1.4)

where

Fi = (1 − K)−1fi, Gi = (1 − KT )−1gi, 1� i�N. (1.5)

Moreover, (see [13]) these functions Fi and Gi can be computed in terms of a canonical auxiliary
Riemann–Hilbert matrix factorization problem naturally associated with K, as described below.

We now recall the basic definition of a Riemann–Hilbert matrix factorization problem. Let �
be an oriented contour in C, as above. As we move along an arc in � in the direction of the
orientation we say, by convention, that the (+)-side (resp. (−)-side) lies to the left (resp. right).
The data of a RHP consists of a pair (�, v), where v : � → Gl (k, C) and v, v−1 ∈ L∞(�). In
case � is unbounded we demand that v(z) → I as z → ∞. The (normalized) RHP consists in
proving existence of a (unique) k × k matrix-function m = m(z), known as the solution of the
RHP, satisfying

• m is analytic in C\�,
• m+(z) = m−(z) v(z), z ∈ �,
• m(z) → I as z → ∞.

Here m±(z) denotes the limits of m(z′) as z′ approaches z from the (±)-side of �. The matrix v is
called the jump matrix for the RHP. The precise sense in which the limits, m±(z) = limz′→z m(z′)
and limz→∞ m(z) = I , are attained is a technical matter (see e.g. [7] for details). The latter limit
requires special care, in particular, when � is unbounded. In all the RHPs that we consider in this
paper, we will require in addition that

• m is continuous up to the boundary of C\�,
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and also

• m(z) → I uniformly as z → ∞ in C\�.

The RHP (�, v) reduces (see e.g. [7]) to the study of a singular integral operator on � in the
following way. Let

v(z) = (v−(z))−1 (v+(z)) , z ∈ �, (1.6)

be any pointwise factorization of v(z) with v±(z) ∈ Gl (k, C). In case � is unbounded we again
demand v±(z) → I as z → ∞. Define �± : � → Gl (k, C) through the relations

v±(z) = I ± �±(z), z ∈ �. (1.7)

Denote the Cauchy operator by

(Ch)(z) = 1

2�i

∫
�

h(z′)
z′ − z

dz′, h ∈ L2 (�) , z ∈ C\� (1.8)

and set

(C±h) (z) = lim
z′→z

z′∈(±)-side of �

(Ch)(z′), h ∈ L2 (�) , z ∈ �. (1.9)

Standard computations show that

C± = ± 1
2 − 1

2H, (1.10)

so that

C+ − C− = 1, C+ + C− = −H. (1.11)

For a given factorization v = (I − �−)−1 (I + �+), define the operator

C�h = C+ (h�−) + C− (h�+) , (1.12)

for k × k matrix-valued functions h in L2 (�). Let � ∈ I + L2 (�) be the solution of the singular
integral equation

(1 − C�) � = I. (1.13)

Remark. For later purposes note that if � is bounded, then I ∈ L2(�), and hence � ∈ L2(�).

Set

m(z) = I + C (� (�+ + �−)) (z), z ∈ C\�. (1.14)

A basic computation using (1.11) and (1.13), then shows that

m±(z) = � v±, z ∈ �. (1.15)

Therefore, m+ = m− v−1− v+ = m− v. Clearly, m is analytic in C\� and m(z) → I as z → ∞,
so that, modulo technicalities, m solves the RHP. Conversely, one verifies that if m solves the
RHP, then � = m+ v−1+ = m− v−1− solves (1.13). Thus, the existence (and uniqueness) of the
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solution of the RHP is equivalent to the existence (and uniqueness) of a solution � ∈ I + L2(�)

of the singular integral equation (1.13) for any (and hence all) pointwise factorization(s) v =
(I − �−)−1 (I + �+).

We now return to our discussion of integrable operators. Suppose K is an integrable operator
with kernel as in (1.1), and that (1 − K)−1 exists with (1 − K)−1 − 1 = R also a kernel operator.
The remarkable fact proven in [13,8] is the following: the functions Fi, Gi in the kernel (1.4) of
the operator R can be computed as

F = (F1, . . . , FN)T =
(

1 ∓ i� f T g
)−1

m±f, (1.16)

G = (G1, . . . , GN)T =
(

1 ± i� f T g
)−1 (

mT
)−1
± g, (1.17)

where m is the solution of the RHP (�, v) with

v = I −
(

2�i

1 + i� f T g

)
fgT . (1.18)

2. Truncated Toeplitz operators as integrable operators

From now on we will assume � = {z ∈ C : |z| = 1} to be oriented counterclockwise. A direct
calculation shows that for any polynomial p = ∑n

j=0 aj zj ∈ Pn,

(Tnp) (z) = ((1 − Kn) p) (z) = p(z) −
∫
�

Kn(z, z
′)p(z′) dz′, (2.1)

where Kn = Kn(�) : L2 (�) → L2 (�) is the operator with kernel

Kn(z, z
′) = zn+1(z′)−(n+1) − 1

z − z′
1 − �(z′)

2�i
. (2.2)

Clearly, Kn is an integrable operator on L2 (�) of form (1.1), where

f = (f1, f2)
T =

(
zn+1, 1

)T

, (2.3)

g = (g1, g2)
T =

(
z−(n+1) 1 − �(z)

2�i
, −1 − �(z)

2�i

)T

. (2.4)

Since f T g = 0 the formulas (1.16)–(1.18) for the functions Fi, Gj appearing in the kernel (1.4)
of Rn = (1 − Kn)

−1 − 1 simplify to

F = m+ f, G =
(
mT+

)−1
g, (2.5)

where m solves the RHP (�, v) with

v =
(

� −zn+1(� − 1)

z−(n+1)(� − 1) 2 − �

)
. (2.6)

Clearly,

Tn(�) zl =
n∑

j=0

�j−l z
j , 0� l�n,
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and so (whenever Tn is invertible) identity (2.1) implies: for 0� l, k�n

2� 
l,k =
(
zl, zk

)
L2(�, |dz|) =

n∑
j=0

�j−l

(
(1 − Kn)

−1zj , zk
)

L2(�, |dz|) .

Hence,

(Tn(�))−1
j,k = 
j,k + 1

2�

(
Rn(�) zk, zj

)
L2(�, |dz|) , 0�j, k�n. (2.7)

This identity is basic for our proof of Theorem 0.1. The invertibility of Tn, for large n, will be
discussed below (see the end of Section 4).

In order to make the forthcoming ideas transparent, let us first assume that � is analytic in
some annular domain

{
� < |z| < �−1

}
, 0 < � < 1. The basic observation is that the lower/upper

factorization of v, which always exists:

v =
(

1 0
z−(n+1)(1 − �−1) 1

)(
� 0
0 �−1

)(
1 −zn+1(1 − �−1)

0 1

)
, (2.8)

can then be analytically extended to the annulus.
Let � < �(1) < 1. Define the function m(1) by

m(1)(z) = m(z), |z| < �(1), (2.9)

m(1)(z) = m(z)

(
1 −zn+1(1 − �−1)

0 1

)−1

, �(1) < |z| < 1, (2.10)

m(1)(z) = m(z)

(
1 0

z−(n+1)(1 − �−1) 1

)
, 1 < |z| < (�(1))−1, (2.11)

m(1)(z) = m(z), |z| > (�(1))−1. (2.12)

Then m(1) solves the RHP
(
�(1), v(1)

)
, where �(1) = {|z| = �(1)

} ∪ {|z| = 1} ∪
{
|z| =(

�(1)
)−1

}
, oriented counterclockwise on each circle, and

v(1)(z) =
(

1 −zn+1(1 − �−1)

0 1

)
, |z| = �(1), (2.13)

v(1)(z) =
(

� 0
0 �−1

)
, |z| = 1, (2.14)

v(1)(z) =
(

1 0
z−(n+1)(1 − �−1) 1

)
, |z| = (�(1))−1. (2.15)

As n gets large, the solution m(1) of the RHP
(
�(1), v(1)

)
should (in some sense) be close to the

solution m
(1)∞ of the RHP

(
�(1), v

(1)∞
)

, where

v(1)∞ (z) = I, |z| = �(1), (2.16)
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v(1)∞ (z) =
(

� 0
0 �−1

)
, |z| = 1, (2.17)

v(1)∞ (z) = I, |z| = (�(1))−1. (2.18)

Standard computations show that the solution of (2.16)–(2.18) is given by

m(1)∞ = exp{C(log(�))}�3 , (2.19)

where �3 =
(

1 0
0 −1

)
denotes the third Pauli matrix.

Hence we expect that m is close (in some sense) to m∞, where

m∞(z) = m(1)∞ (z), |z| < �(1), (2.20)

m∞(z) = m(1)∞ (z)

(
1 −zn+1(1 − �−1)

0 1

)
, �(1) < |z| < 1, (2.21)

m∞(z) = m(1)∞ (z)

(
1 0

z−(n+1)(1 − �−1) 1

)−1

, 1 < |z| < (�(1))−1, (2.22)

m∞(z) = m(1)∞ (z), |z| > (�(1))−1. (2.23)

Finally, let us define

R∞
n (�; z, z′) =

∑2
j=1 F∞

j (z)G∞
j (z′)

z − z′ , z, z′ ∈ �, (2.24)

where

F∞(z) = m∞,+(z) f (z), G∞(z) =
(
mT∞,+

)−1
(z) g(z), z ∈ � (2.25)

and also write(
T ∞

n (�)
)−1
j,k

= 
j,k + 1

2�

(
R∞

n (�) zk, zj
)

L2(�, |dz|) . (2.26)

We emphasize that we use the left-hand side of 2.26 only as a formal symbol for the quantity on
the right-hand side. By the above consideration, we expect

(Tn(�))−1
jk ∼ (

T ∞
n (�)

)−1
jk

. (2.27)

Although in this section we have assumed analyticity of � in order to motivate our calculations,
note the following: even in case that � is not analytic in an annulus we still define m∞,+(z) =
m

(1)
∞,+(z)

(
1 −zn+1(1 − �−1)

0 1

)
, z ∈ �, and also F∞, G∞, R∞

n and
(
T ∞

n

)−1
j,k

in the same way.

Under the only assumption that � belongs to W� we still expect 2.27 to be true.

Remark. In case � is analytic in an annulus, m∞,+ is the boundary value on � of a piecewise
analytic function m∞ which solves a RHP. In general, for � ∈ W�, this is no longer true.
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3. Explicit computation of
(
T ∞

n (�)
)−1
j,k

for � in W�

Solving (2.16)–(2.18) for m
(1)∞ and using definition (2.24) and the Wiener–Hopf factorization

� = �+ �−, we obtain

R∞
n (�; z, z′) = 1

2�i

1

(z′)n+1

1

z − z′

[
(z′)n+1 �+(z′)

�+(z)
− zn+1 �−(z′)

�−(z)

+ zn+1 1

�−(z)�+(z′)
− (z′)n+1 1

�+(z)�−(z′)

]
. (3.1)

In order to evaluate the right-hand side of (2.26) further, it is convenient to assume again that
� is analytic in an annulus

{
� < |z| < �−1

}
, 0 < � < 1. Clearly then �± are also analytic in

the same annulus. We will later remove this analyticity assumption (see below). Writing �� =
{z ∈ C : |z| = 1 − �}, � > 0 sufficiently small, and using Cauchy’s theorem as well as the ele-
mentary identity

1

z − z′ = 1

z

∞∑
m=0

(
z′

z

)m

, z ∈ �, z′ ∈ ��,

we then obtain for 0�j, k�n

1

2�

(
R∞

n (�) zk, zj
)

L2(�, |dz|) = lim
�↓0

1

2�

∫
�

(∫
��

R∞
n (z, z′)(z′)k dz′

)
z−j dz

iz

= 1

(2�i)2 lim
�↓0

∞∑
m=0

[ ∫
��

(z′)k+m�+(z′)dz′ ·
∫
�

z−(j+2+m) 1

�+(z)
dz

−
∫
��

(z′)k−n−1+m�−(z′)dz′ ·
∫
�

z−(j+2+m−n−1) 1

�−(z)
dz

+
∫
��

(z′)k−n−1+m 1

�+(z′)
dz′ ·

∫
�

z−(j+2+m−n−1) 1

�−(z)
dz

−
∫
��

(z′)k+m 1

�−(z′)
dz′ ·

∫
�

z−(j+2+m) 1

�+(z)
dz

]
=

∞∑
m=0

[ (
�+
)
−k−1−m

(
�−1+

)
j+1+m

− (
�−
)
n−k−m

(
�−1−

)
j−n+m

+
(
�−1+

)
n−k−m

(
�−1−

)
j−n+m

−
(
�−1−

)
−k−1−m

(
�−1+

)
j+1+m

]
= 0 −

[
T
(
�−
)
T
(
�−1−

)]
n−k,n−j

+
∞∑

m=j+k−n

(
�−1+

)
j−m

(
�−1−

)
m−k

−
−1∑

m=−∞

(
�−1+

)
j−m

(
�−1−

)
m−k

.
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Since
[
T
(
�−
)
T
(
�−1−

)]
n−k,n−j

= 
j,k we obtain upon insertion into (2.26):

(
T ∞

n (�)
)−1
j,k

=
∞∑

m=j+k−n

(
�−1+

)
j−m

(
�−1−

)
m−k

−
−1∑

m=−∞

(
�−1+

)
j−m

(
�−1−

)
m−k

=
[
T
(
�−1+

)
T
(
�−1−

)]
j,k

−
∞∑

m=n+1−j−k

(
�−1+

)
j+m

(
�−1−

)
−(m+k)

. (3.2)

As we shall now see, the basic identity (3.2) remains valid if we only assume that � ∈ W�,
i.e. without the restriction that � be analytic in an annular neighborhood of the unit circle. To
see this, let us write � = ew, where w(z) = ∑∞

−∞ wj zj , z ∈ �. Put �(N) = ew(N)
, where

w(N)(z) = ∑N
−N wj zj , z ∈ �. Then w, w(N) ∈ W�. Observe that

lim
N→∞

∥∥∥∥(�±
)±1 −

(
�(N)

±
)±1

∥∥∥∥
L∞(�)

= 0. (3.3)

For instance, writing w+(z) = ∑∞
0 wj zj and w

(N)
+ (z) = ∑N

0 wj zj , we have

�+ − �(N)
+ = ew+ − ew

(N)
+ = ew

(N)
+ · (ew̃N − 1

)
,

where w̃N(z) = ∑∞
N+1 wj zj . On the other hand,

∣∣ew̃N − 1
∣∣ =

∣∣∣∣∫ 1

0

d

dt
et w̃N dt

∣∣∣∣ =
∣∣∣∣∫ 1

0
w̃N et w̃N dt

∣∣∣∣ � |w̃N | max
0� t �1

∣∣et w̃N
∣∣

and since

|w̃N(z)| =
∣∣∣∣∣

∞∑
N+1

wj zj

∣∣∣∣∣ �
∞∑

N+1

∣∣wj

∣∣ , z ∈ �,

the statement (3.3) clearly follows in this case from the fact that w ∈ W�. The other cases are
almost identical. Since �(N) is obviously analytic in C\{0} the identity (3.2) is valid with �
replaced by �(N). We shall now see that each term converges as N → ∞ to the same term with
�. Firstly,

lim
N→∞

(
T ∞

n (�(N))
)−1

j,k
= (

T ∞
n (�)

)−1
j,k

. (3.4)

To see why, note from formula 3.1 that the operator R∞
n (�) consists of four parts, all being of the

form �j H �j , j = 1, . . . , 4. Here �i , �j : L2(�) → L2(�), 1� i, j �4, are operators of multi-

plication. For instance (ignoring a factor 2), �1 is multiplication by �−1+ and �1 is multiplication
by �+. Using (3.3) and L2-boundedness of H one therefore sees that

lim
N→∞

∥∥∥R∞
n (�) − R∞

n

(
�(N)

)∥∥∥
L2→L2

= 0,

so that (3.4) follows from (2.26). Secondly, that

lim
N→∞

[
T
(
(�(N)

+ )−1
)

T
(
(�(N)

− )−1
)]

j,k
=
[
T
(
�−1+

)
T
(
�−1−

)]
j,k

,
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follows similarly from (3.3) and the basic estimates∥∥∥T (�−1±
)

− T
(
(�(N)

± )−1
)∥∥∥

L2→L2
�
∥∥∥(�±

)−1 − (�(N)
± )−1

∥∥∥
L∞(�)

.

Finally, we have

lim
N→∞

⎧⎨⎩
∞∑

m=n+1−j−k

(
(�(N)

+ )−1
)

j+m

(
(�(N)

− )−1
)

−(m+k)

⎫⎬⎭
=

∞∑
m=n+1−j−k

(
�−1+

)
j+m

(
�−1−

)
−(m+k)

. (3.5)

To see why, first note that by a computation almost identical to that giving the inequality (4.1)
below, we immediately obtain∣∣∣∣∣∣

∞∑
m=n+1−j−k

(
�−1+

)
j+m

(
�−1−

)
−(m+k)

−
∞∑

m=n+1−j−k

(
(�(N)

+ )−1
)

j+m

(
(�(N)

− )−1
)

−(m+k)

∣∣∣∣∣∣
�
(∥∥∥�−1+ − (�(N)

+ )−1
∥∥∥

�

∥∥∥�−1−
∥∥∥

�
+
∥∥∥(�(N)

+ )−1
∥∥∥

�

∥∥∥�−1− − (�(N)
− )−1

∥∥∥
�

)
.

On the other hand, with w−(z) = ∑−1
−∞ wj zj and w

(N)
− (z) = ∑−1

−N wj zj , we get∥∥∥�−1± − (�(N)
± )−1

∥∥∥
�

=
∥∥∥e−w± − e−w

(N)
±
∥∥∥

�

=
∥∥∥∥∥∑

k∈N

(−1)k

k!
(
(w±)k − (w

(N)
± )k

)∥∥∥∥∥
�

=
∥∥∥∥∥∥
∑
k∈N

(−1)k

k!
(
w± − w

(N)
±
) k−1∑

j=0

(w
(N)
± )k−1−j (w±)j

∥∥∥∥∥∥
�

�
∥∥∥w± − w

(N)
±
∥∥∥

�

∑
k∈N

1

k! k ‖w±‖k−1
� =

∥∥∥w± − w
(N)
±
∥∥∥

�
exp (‖w±‖�) ,

since ‖·‖� is submultiplicative and
∥∥∥w(N)

±
∥∥∥

�
� ‖w±‖�. Obviously w

(N)
± → w± in W� as N → ∞,

which completes the proof of (3.5).
From now on all assumptions of analyticity will be dropped, and from this section we shall

only keep the basic fact that identity (3.2) is valid for all � ∈ W�.

4. Estimates of the remainder

In this section we shall provide the necessary estimates of the remainder. Assume that � ∈ W�,
� �= 0 on R� and wind(�, 0) = 0. Then �± ∈ W� and �−1± ∈ W�. Clearly, for 0�j, k�n,
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we have∣∣∣∣(�−1+
)

j+m

∣∣∣∣ �
∞∑

l=n+1−k

∣∣∣(�−1+
)

l

∣∣∣ , m�n + 1 − j − k.

We can therefore estimate the “error term” in (3.2) as follows; for 0�j, k�n∣∣∣∣∣∣
∞∑

m=n+1−j−k

(
�−1+

)
j+m

(
�−1−

)
−(m+k)

∣∣∣∣∣∣
�
( ∞∑

l=n+1−k

∣∣∣(�−1+
)

l

∣∣∣) ·
⎛⎝ ∞∑

l=n+1−j

∣∣∣∣(�−1−
)

−l

∣∣∣∣
⎞⎠

� |||�|||0 · min
{|||�|||0,n+1−k, |||�|||0,n+1−j

}
. (4.1)

The main part of the proof of Theorem 0.1, namely that of inequality (0.11), is complete once we
prove that the estimate:∣∣∣∣(Rn zk, zj

)
L2(�)

−
(
R∞

n zk, zj
)

L2(�)

∣∣∣∣ �c(�) · |||�|||0,n+1 (4.2)

is valid for 0�j, k�n, with c(�) independent of n (for n sufficiently large).
First note that (see (2.5))(

Rn zk, zj
)

L2(�)
=
∫ ∫

�×�

FT (z)G(z′)
z − z′ (z′)k z−j dz′ dz

iz

= lim
�↓0

∫ ∫
{(z,z′)∈�×� : |z−z′|>�}

FT (z)G(z′)
z − z′ (z′)k z−j dz′ dz

iz

= �
∫
�

FT (z)z−(j+1)

(
lim
�↓0

∫
|z−z′|>�

G(z′)(z′)k

z − z′
dz′

i�

)
dz

= �
∫
�

FT (z)z−(j+1) H
(
G(�) �k

)
(z) dz

= i�
∫
�

H
(
GT (�) �k

)
(z) F (z) zj

dz

iz

= i�
(
H
(
G(�) �k

)
, F (�) �j

)
L2(�)

.

Therefore (see (2.25)),∣∣∣∣(Rn zk, zj
)

L2(�)
−
(
R∞

n zk, zj
)

L2(�)

∣∣∣∣
=
∣∣∣∣i� (H (

G(�) �k
)

, F (�) �j
)

L2(�)
− i�

(
H
(
G∞(�) �k

)
, F∞(�) �j

)
L2(�)

∣∣∣∣
�c · (‖G − G∞‖L2(�) · ‖F‖L2(�) + ‖G∞‖L2(�) · ‖F − F∞‖L2(�)

)
,

by L2-boundedness of H.
We shall now prove that

‖G − G∞‖L2(�) , ‖F − F∞‖L2(�) �c(�) · |||�|||0,n+1, (4.3)

‖F‖L2(�) , ‖G∞‖L2(�) �c(�) (4.4)
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with c(�) independent of n (for n sufficiently large). For this we need the following elementary
lemma:

Lemma 4.1. For n�0 and f ∈ W�,

‖C+
(
z−n f

) ‖L2(�) �
√

2�
∞∑

k=n

|fk| , ‖C−
(
zn f

) ‖L2(�) �
√

2�
∞∑

k=n+1

|f−k| .

(4.5)

Proof. We shall prove only the first bound, since the other is almost identical. It is easy to verify
(and we have already used several times without notice) the fact that C+ agrees with the Riesz
projection P+ : L2(�) → H+ on L2(�). Thus,

C+
(
z−n f

)
(z) =

∞∑
k=0

̂z−n f (k) zk =
∞∑

k=0

fk+n zk,

so by Parseval

‖C+
(
z−n f

) ‖2
L2(�)

= 2�
∞∑

k=n

|fk|2 �2�

( ∞∑
k=n

|fk|
)2

. �

The estimates (4.3) follow from the inequality

‖m+ − m∞,+‖L2(�) �c(�) · |||�|||0,n+1 (4.6)

with c(�) independent of n (for n sufficiently large), which we shall now prove. In view of (2.8)
it is natural to put


 = exp {C(log �)} , 
± = exp {C±(log �)}
and

M = m 
−�3 ,

where again �3 =
(

1 0
0 −1

)
denotes the third Pauli matrix. Note that 
+ = �+ and 
− = �−1− .

Then,

M+ = M− vM,

where vM = 
�3− v 
−�3+ . A computation gives that

vM =
(
vM−
)−1

vM+ =
(
I − �M−

)−1 (
I + �M+

)
,

where

�M− =
(

0 0
z−(n+1)

(
1 − �−1

)

−2− 0

)
, �M+ =

(
0 −zn+1

(
1 − �−1

)

2+

0 0

)
.

(4.7)
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We know that

M± = �M vM± ,

where (
1 − C�M

)
�M = I, �M ∈ L2(�). (4.8)

Hence,

m± = M± 
�3± = �M vM± 
�3± (4.9)

with �M given as the solution of the singular integral equation (4.8). Also,

m∞,+(z) = m
(1)
∞,+ (z)

(
1 −zn+1

(
1 − �−1

)
0 1

)
= 
�3+ (z)

(
1 −zn+1

(
1 − �−1

)
0 1

)
= vM+ 
�3+ , (4.10)

for z ∈ �. Combining (4.9) and (4.10) we see that

m+ − m∞,+ =
(
�M − I

)
vM+ 
�3+ . (4.11)

On the other hand,

�M − I = (
1 − C�M

)−1
C�M I = (

1 − C�M

)−1
(
C+ �M− + C− �M+

)
. (4.12)

By Lemma 4.1∥∥∥C+ �M−
∥∥∥

L2(�)
=
∥∥∥C+

(
z−(n+1) �−1 
−2−

)∥∥∥
L2(�)

�
√

2�
∞∑

k=n+1

|(
−1+ 
−1− )k|

�
√

2�
∞∑
l=0

|(
−1− )−l | ·
∞∑

l=n+1

|(
−1+ )l |�
√

2� |||�|||0 · |||�|||0,n+1.

(4.13)

Similarly,∥∥∥C− �M+
∥∥∥

L2(�)
�

√
2� |||�|||0 · |||�|||0,n+2. (4.14)

Furthermore, clearly∥∥∥vM+ 
�3+
∥∥∥

L∞(�)
�4 |||�|||0. (4.15)

Combining (4.11)–(4.15) we see that the proof of inequality (4.6) is complete once we show that(
1 − C�M

)−1 exists for n sufficiently large, and that∥∥∥(1 − C�M

)−1
∥∥∥

L2(�)→L2(�)
�c(�), (4.16)

for n sufficiently large, with c(�) independent of n. One sees that existence of
(

1 − C2
�M

)−1

implies existence of
(
1 − C�M

)−1 and that(
1 − C�M

)−1 = (
1 + C�M

) (
1 − C2

�M

)−1
, (4.17)
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whenever both inverses exists. But it is not difficult to see that

lim
n→∞

∥∥∥C2
�M

∥∥∥
L2(�)→L2(�)

= 0. (4.18)

To see this, introduce the abbreviations a = (
1 − �−1

)

−2− , �n(z) = a z−(n+1), b =

− (1 − �−1
)


−2+ and 	n(z) = b zn+1. A direct computation gives that

C2
�M h =

(
C+

(
�n C−

(
	n h11

))
C−

(
	n C+ (�n h12)

)
C+

(
�n C−

(
	n h21

))
C−

(
	n C+ (�n h22)

)) , h =
(

h11 h12
h21 h22

)
.

Consider C+
(
�n C−

(
	n h11

))
, say. Obviously,∥∥C+

(
�n C−

(
	n h11

))∥∥
L2(�)

� ‖C+ �n C−‖L2(�)→L2(�)

∥∥	n

∥∥
L∞(�)

‖h11‖L2(�) .

But clearly

lim
n→∞ ‖C+ �n C−‖L2(�)→L2(�) = 0. (4.19)

To see this, let � > 0. For N sufficiently large∥∥∥∥∥∥a −
∑

|k|�N

ak zk

∥∥∥∥∥∥
L∞(�)

< �.

Put ã(z) = ∑
|k|�N

ak zk . Then,

‖C+ �n C−‖L2→L2

�
∥∥∥C+ (a − ã) z−(n+1) C−

∥∥∥
L2→L2

+
∥∥∥C+ ã z−(n+1) C−

∥∥∥
L2→L2

�‖C+‖L2→L2 ‖a − ã‖L∞ ‖C−‖L2→L2 +
∥∥∥∥∥∥C+

∑
|k|�N

ak z−(n−k+1) C−

∥∥∥∥∥∥
L2→L2

.

Clearly, the first term is �-small, whereas the second is zero for n > N − 2. This verifies (4.19)
and therefore (4.18). Using (4.17), (4.18) we immediately obtain∥∥∥(1 − C�M

)−1
∥∥∥

L2→L2
�
(

1 + ‖�M‖L∞
) 1

1 − ∥∥C�M

∥∥2
L2→L2

�c(�),

for n sufficiently large, with c(�) independent of n. This proves (4.16). The estimate (4.4) follows
similarly from the above estimates. This completes the proof of inequality (0.11). Inequalities
(0.12) and (0.13) follows directly from (0.11) and the computations (with m = n + 1 − k and
m = n + 1 − j )

|||�|||0,m � max
�∈{�+,�−,�−1+ ,�−1− }

∑
|l|�m

�l

e|l| A(�) |�l |�
1

em A(�) |||�|||�

and in case � increases on Z+,

|||�|||0,m � max
�∈{�+,�−,�−1+ ,�−1− }

∑
|l|�m

�l

�m

|�l |�
1

�m

|||�|||�.
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We conclude by noting that the above considerations imply the existence of T −1
n for n sufficiently

large. Indeed, from the equivalence of solvability of RHPs and singular integral equations dis-
cussed in Section 1, it follows from the existence of

(
1 − C�M

)−1 that also (1 − C�)−1 exists for
any factorization v = (I − �−)−1 (I + �+) (with v as in (2.6)). So, by the basic relation between
the integrable operator Kn (as in (2.2)) and the operator C� used together with the commutation
formula in [8] to associate Rn to a RHP, it follows that (1 − Kn)

−1 exists for n sufficiently large.
Since (according to (2.1)) the operators Tn and 1 − Kn agree on Pn, the statement follows. Our
proof of Theorem 0.1 is complete.

5. Another look at Baxter’s theorem

The following theorem is due to Baxter.

Theorem 5.1. Let d� be a non-trivial probability measure on the unit circle and � be a strong
Beurling weight. Then,

∑
n∈Z+

�n zn ∈ W� ⇔ d�(z) = w(z)
|dz|
2�

, w ∈ W�, min
z∈�

w(z) > 0. (5.1)

A key element in the proof of inequality (4.6) lies in the fact that C2
�M (see (1.12), (4.7)) is a

bounded operator in L2(�, |dz|) whose norm is small when n is large. The same is true for C2
�M

as a (bounded) operator in W�. As we will see, this observation leads to a proof of Theorem 0.2
and thus a new proof of the reverse statement in Baxter’s theorem.

Proof of Theorem 0.2. Of course, the monic polynomials and hence the Verblunsky coefficients
do not change if we multiply the weight by a constant: hence we can (and will) assume from the
beginning that

(log w)0 = 0 (5.2)

without any loss of generality. This will simplify some of the expressions below.
As observed in [8] the RHP (�, v), with v as in (2.6) (considered in Section 2), is equivalent

(modulo interchanging n ↔ n + 1) to another RHP, namely

• Y+(z) = Y−(z)

(
1 w/ zn

0 1

)
, z ∈ �,

• Y (z)

(
z−n 0

0 zn

)
→ I as z → ∞.

We shall use the following basic fact: The (1, 1)-entry of the (unique) solution of this RHP
equals the nth monic OPUC, Y11 = �n. This RHP, introduced in [1], is the OPUC analog of the
celebrated RHP of Fokas et al. [12] for polynomials orthogonal with respect to a weight on the
line.
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Introduce the successive transformations

Y1(z) =
⎧⎨⎩

Y (z), |z| < 1,

Y (z)

(
z−n 0

0 zn

)
, |z| > 1,

(5.3)

Y2(z) =
⎧⎨⎩ Y1(z)

(
0 −1
1 0

)
, |z| < 1,

Y1(z), |z| > 1
(5.4)

and, with


 = exp {C(log w)} , 
± = exp {C±(log w)} ∈ W�, (5.5)

set

Y3 = Y2 
−�3 . (5.6)

One then easily verifies that (recall (5.2))

�n(0) = − (Y3)12 (0), (5.7)

where Y3 satisfies a normalized RHP (�, v3) with jump-matrix

v3 = (I − �−)−1 (I + �+) (5.8)

and

�− =
(

0 0
z−n r(z) 0

)
, �+ =

(
0 −zn r−1(z)

0 0

)
; r = 
−1+ 
−1− ∈ W�. (5.9)

By the general theory (recall (1.14)),

Y3(z) = I + C (�(�+ + �−)) (z), z ∈ C \ �, (5.10)

where

(1 − C�) � = I, � ∈ L2(�). (5.11)

It follows from (5.7), (5.9) and (5.10) that

�n(0) = C
(
�11 zn r−1

)
(0). (5.12)

Let us put �̃(n) = �11, where we have explicitly indicated the dependence on n in order to avoid
confusion in the following. It remains to prove that∑

n�n0

�n

∣∣∣C (̃�(n) zn r−1
)

(0)

∣∣∣ < ∞. (5.13)

From the first row of (5.11):(
�11, �12

) = (1, 0) +
(
C+

(
�12 z−n r

)
, C−

(
�11 (−zn r−1)

))
. (5.14)

Inserting the equation for �12 into the equation for �11 implies the following equation for �̃(n)

alone:

�̃(n) = 1 − C+
[
C−

(̃
�(n) zn r−1

)
z−n r

]
. (5.15)
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Clearly,

�̃(n)(z) =
∑
l �0

�̃(n)
l zl (5.16)

and we shall write r(z) = ∑∞
k=−∞ rk zk and r−1(z) = ∑∞

m=−∞(r−1)m zm. It follows from (5.15)
that

�̃(n)
l = 
l,0 +

∑
p�0,p+m+n<0

(r−1)m rl−p−m �̃(n)
p , l�0. (5.17)

Let us denote by W±
� the subalgebra of W� consisting of functions whose negative/non-negative

Fourier-coefficients are 0 and also write ‖ · ‖�± = ‖P± · ‖�, where P± denotes the L2-orthogonal
projection onto H±. Define

(
A(n)f

)
l
, for n, l�0 and f ∈ W+

� , by(
A(n)f

)
l
=

∑
p�0,p+m+n<0

(r−1)m rl−p−m fp. (5.18)

With this notation Eq. (5.15) takes the form

�̃(n) = 1 + A(n) �̃(n). (5.19)

Eq. (5.19) is due essentially to Geronimo and Case (see [6], Eqs. (V.9), (V.10)) and plays an
important role in what follows. The operator A(n) in Eq. (5.19) also appears in [6] in a Fredholm
determinant formula for the Toeplitz determinant det Tn(w) (see Eq. (VII.28)). This formula was
rediscovered by Borodin and Okounkov in [2] and plays an important role in a variety of problems
in algebraic combinatorics (see e.g. [3]). The operator A(n) is often called the Borodin–Okounkov
operator.

It is not difficult to establish the following.

Lemma 5.2. Let � be a Beurling weight and suppose r ∈ W�. Then A(n) is a bounded operator
on W+

� . Moreover, ‖A(n)‖W+
� →W+

�
→ 0, as n → ∞.

Proof. By submultiplicativity �l ��l−p−m �p �m, and therefore

‖A(n)f ‖�+ =
∑
l �0

�l

∣∣∣∣∣∣
∑

p�0,p+m+n<0

(r−1)m rl−p−m fp

∣∣∣∣∣∣
�‖r‖�+

( ∑
m<−n

�m |(r−1)m|
)

‖f ‖�+ ,

which since r−1 ∈ W� proves the claim. �

It follows from (5.19) and Lemma 5.2 that for n sufficiently large, say n�n0, Eq. (5.15) is
uniquely solvable and that

‖̃�(n)‖� �c ‖1‖� �c� (5.20)

with a constant c� independent of n. We shall need a slightly stronger version of the latter; for n0
sufficiently large∑

l �0

�l sup
n�n0

|̃�(n)
l |�c�. (5.21)
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To see why this is so, first note from (5.17) that for n�n0

|̃�(n)
l |�
l,0 +

∑
p�0,p+m+n0<0

|(r−1)m| |rl−p−m| |̃�(n)
p |, l�0. (5.22)

As in the proof of Lemma 5.2 we see, that for n0 sufficiently large, the equation

sl = 
l,0 +
∑

p�0,p+m+n0<0

|(r−1)m| |rl−p−m| sp (5.23)

can be (uniquely) solved for s(z) = ∑
l �0 sl z

l ∈ W+
� . It suffices to pick n0 so large that the

operator K : W+
� → W+

� given by

(Kf )l =
∑

p�0,p+m+n0<0

|(r−1)m| |rl−p−m| fp, l�0

has norm less than 1; this is always possible, as in the proof of Lemma 5.2. In the same way that
we obtained (5.20) we see that

‖s‖� �c�. (5.24)

To prove (5.21) it is therefore enough to show that

sup
n�n0

|̃�(n)
l |�sl, l�0. (5.25)

Denote by �(n) ∈ W+
� the element with Fourier coefficients �(n)

l = |̃�(n)
l |, l�0. Then we see from

(5.22) that

�(n) + �(n) = 1 + K �(n),

where �(n) ∈ W� has only non-negative Fourier coefficients. That is, by (5.23),

�(n) = (1 − K)−1
(

1 − �(n)
)

= s −
∞∑

j=0

Kj �(n),

which, since K has non-negative kernel, proves (5.25).
Now

C
(̃
�(n) zn r−1

)
(0) =

∫
�

�̃(n)(z) zn r−1(z)
dz

2�iz
=
∑
l �0

�̃(n)
l (r−1)−n−l (5.26)

and we see that to prove (5.13), it suffices to show that∑
n�n0

∑
l �0

�n |̃�(n)
l | |(r−1)−n−l | < ∞. (5.27)

But, by (5.25), (5.24) and the evenness of �,∑
n�n0

∑
l �0

�n |̃�(n)
l | |(r−1)−n−l |�

∑
n�n0

∑
l �0

�n+l�−lsl |(r−1)−n−l |�c�‖r−1‖�− .

This completes our proof of (0.14), and in particular that the RHS of (5.1) ⇒ LHS of (5.1) in
Baxter’s theorem. �
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Let us now assume that the Beurling weight � is increasing on Z+. Observe first that by (5.12),
(5.17) and (5.26) we have

�n(0) = (r−1)−n +
∑
l �0

(
A(n) �̃(n)

)
l
(r−1)−n−l . (5.28)

By definition (5.18) of A(n) and (5.25), (5.24), we have

∑
n�n0

�3
n

∣∣∣∣∣∣
∑
l �0

(
A(n) �̃(n)

)
l
(r−1)−n−l

∣∣∣∣∣∣
=
∑

n�n0

�3
n

∣∣∣∣∣∣
∑
l �0

∑
p�0,p+m+n<0

(r−1)m rl−p−m �̃(n)
p (r−1)−n−l

∣∣∣∣∣∣
�
∑

n�n0

∑
l �0

∑
p�0

∑
m>n+p

�n+l �m �m−p+l |(r−1)−m| |rl−p+m| |(r−1)−n−l | sp

�c ‖r‖�+ ‖r−1‖2
�− .

It should be noted that (by first extending the domains of summation) the above sums were carried
out by first summing over n, then over l, and finally over m and p. This means, by (5.28), that∑

n�n0

�3
n

∣∣∣�n(0) − (r−1)n

∣∣∣ < ∞. (5.29)

It is customary to introduce the Szegö function,

D(z) = exp

(
1

4�

∫ 2�

0
log w(ei�)

ei� + z

ei� − z
d�

)
, z ∈ C \ �.

Note that D(z) and 
(z) are in general proportional, and that in case (log w)0 = 0 (see above)
they are equal. Following Simon we also introduce the function

S(z) = −
∞∑

n=1

�n−1 zn,

where �n−1 ≡ −�n(0) for n�n0 and �n−1 ≡ 0 for n < n0. We shall use the notation Di resp. De

for the restriction of D to the interior resp. exterior of the unit circle, as well as for the analytical

continuations of these functions across the unit circle, should they exist. Now, (r−1)−n = (
(r−1)n

)
and r−1 = Di De. Also, if w is positive, then De(z) = 1/Di(1/z), |z| > 1. Eq. (5.29) therefore
implies the following result.

Theorem 5.3. Let � be a Beurling weight which increases on Z+ and d�(z) = w(z)
|dz|
2� be a

measure on the unit circle. Suppose that w ∈ W�, w �= 0 on R�, wind(w, 0) = 0. Then,

Di De − S ∈ W+
�3 . (5.30)

In particular, for w positive, we obtain

Di

Di

− S ∈ W+
�3 . (5.31)
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This theorem should be viewed as a refinement of the reverse implication in Baxter’s theorem:
not only is S ∈ W�, but S = Di De up to three orders of smoothness. Alternatively, from a
physical point of view we can regard Di De as the principal object of study: indeed for real

weights, r = r−1 = Di

Di
is the reflection coefficient for the system at hand and S is the leading

Born approximation (see [18,19]). Thus, (5.31) is an estimate of how the Born approximation
deviates from r.

It is a well-known theorem of Nevai and Totik [15] that for real d�, lim supn→∞ |�n|1/n =
R−1 < 1 if and only if d� obeys the Szegö condition, d�s = 0 and D−1

i has an analytic extension
to {z ∈ C : |z| < R}. Theorem 5.3 therefore has the following corollary.

Corollary 5.4. Let d� be a positive measure on �. Suppose that

lim sup
n→∞

|�n|1/n = R−1 < 1, (5.32)

so that D−1
i and S are analytic in {z ∈ C : |z| < R}. Then, for some 
 > 0, the function

Di(
1
z
)/Di(z) − S(z) is analytic in

{
z ∈ C : 1 − 
 < |z| < R3

}
.

Proof. It follows from the result of Nevai and Totik that 1
w

= De

Di
is analytic, and in particular that w

cannot vanish, in the set {z ∈ C : 1/R < |z| < R}. In addition, as w > 0 on �, wind(w, 0) = 0.We
may then, for any � > 0, apply Theorem 5.3 to the Beurling weight defined by vn = (R (1 − �))|n|
for n ∈ Z. This proves analyticity in {1 < |z| < R3}. The analyticity in {1 − 
 < |z| < R3}
follows from the fact that Di is meromorphic in |z| < R, but has no poles on �. �

In [17] Simon proved Corollary 5.4 with R3 replaced by R2, see Theorem 7.2.1. Motivated by
Corollary 5.4 above, Simon [19] has now given an independent proof of the result.

6. Some examples

We thank Barry Simon for drawing our attention to the following examples from [17], which
illustrate the sharpness of Corollary 5.4 (see also [19]).

Example 1 (Single non-trivial moment). Consider the weight w(ei�) = 1−a cos �, 0 < a < 1,
having a single non-trivial moment. Introduce the auxiliary parameters

�± = a−1 ±
√

a−2 − 1. (6.1)
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Note that �+ �− = 1, 0 < �− < 1. By computation one finds that

Di(z) =
√

a

2 �−

(
1 − z

�+

)
(6.2)

and so D−1
i has a simple pole at z = �+. Also,

�n = − �+ − �−
�n+2+ − �n+2−

= −(�+ − �−) �−n−2+
(

1 − �−(2n+4)
+

)−1

= −(�+ − �−)

∞∑
j=1

(�−n−2+ )2j−1, (6.3)

so that S has simple poles at zj = �2j−1
+ , j ∈ N. The statement in Corollary 5.4 is easily verified

by noting that Res(Di(1/z)/Di(z), z = �+) = Res(S, z = �+) = −(�+ − �−).

Example 2 (Rogers–Szegö polynomials). Let 0 < q < 1 and consider the weight with Verblun-
sky coefficients

�n = (−1)n q(n+1)/2, n�0. (6.4)

Then,

Di(z) = �∞
j=0 (1 − qj+1)1/2 (1 + qj+1/2 z) (6.5)

so that D−1
i has simple poles at zj = −q−j−1/2, j �0. On the other hand,

S(z) = −
∞∑

n=1

(−1)n qn/2 zn = − q1/2 z

1 + q1/2 z
(6.6)

has a simple pole at z = −q−1/2. The statement in Corollary 5.4 follows from
Res(Di(1/z)/Di(z), z = −q−1/2) = Res(S, z = −q−1/2) = q−1/2.

7. The inverse statement in a theorem of Golinskii–Ibragimov

Let us denote by H 1/2 the Sobolev space of functions f ∈ L2(�) with
∑

l∈Z |l| |fl |2 <

∞, equipped with the norm ‖f ‖1/2 = (
∑

l∈Z(1 + |l|) |fl |2)1/2. Let H
1/2
R denote the class of

real-valued functions in H 1/2. The following theorem is implied by the Ibragimov/Golinskii–
Ibragimov version of the Strong Szegö Limit Theorem [17].

Theorem 7.1. Let d� be a non-trivial probability on the unit circle. Then,∑
n∈Z+

n |�n|2 < ∞ ⇔ d� = w
|dz|
2�

and log w ∈ H
1/2
R . (7.1)

Just as Riemann–Hilbert techniques provide a direct proof of the I-part of Baxter’s theorem,
they can also be used to proof that the RHS of (7.1) ⇒ LHS of (7.1). This is the goal of this
section.

We will need the following proposition (see [17], Proposition 6.2.6).
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Proposition 7.2. For f ∈ H
1/2
R , let

I (f ) = −
∑
k>0

fk zk +
∑
k<0

fk zk (7.2)

and

B(f ) = exp(I (f )). (7.3)

Then B maps H
1/2
R continuously into H 1/2.

It follows immediately from the above that if log w ∈ H
1/2
R , then r = Di

Di
= B(log w) ∈ H 1/2.

Next observe that for real measures d�, rm = r−m, and hence (5.18) takes the form

(A(n)f )l =
∑
p�0

(∑
m>n

rl+m rm+p

)
fp, l�0. (7.4)

Previously we regarded A(n) as an operator in W�. However, A(n) can also be regarded as a trace
class (and in particular bounded), positive, self-adjoint operator on l2+ ≡ l2(Z+)�H+. Indeed,
A(n) has the form R �n R∗ where R is the Hilbert–Schmidt operator on l2+ with kernel Ri,j = ri+j ,
i, j �0,

‖R‖2
I2(l

2+)
=

∑
i,j �0

|ri+j |2 =
∑
i �0

(1 + i) |ri |2 �‖r‖2
1/2 (7.5)

and �n denotes multiplication by the characteristic function of the set {m > n}. It follows that
A(n) is trace class in l2+ with

‖A(n)‖l2+→l2+ �‖A(n)‖I1(l
2+) =

∑
l �0

∑
m>n

|rl+m|2 �
∑
m>n

(1 + m) |rm|2. (7.6)

From (5.12), (5.26)

�n−1 = −�n(0) = −
∑
l �0

�̃(n)
l rn+l . (7.7)

Here �̃(n) = (̃�(n)
l )l �0 solves Eq. (5.19) in W�. However, by (7.6) Eq. (5.19) is also uniquely

solvable in l2+ for n sufficiently large. As W� ↪→ l2+, it follows that we may regard �̃(n) as the
(unique) solution of (5.19) in l2+. But r(n) = (rn+l )l �0 is also in W� ↪→ l2+ and hence we may
write (7.7) in the form

�n−1 = −
(

r(n),
1

1 − A(n)
e0

)
l2+

, (7.8)

where e0 = (1, 0, 0, . . . )T and the inverse of 1 − A(n) is taken in l2+.
Eq. (7.8) is derived in the case w ∈ W�, but as we now show, it remains true for w with

log w ∈ H
1/2
R . Note first that for f ≡ log w ∈ H

1/2
R , w ∈ Lp(�) for all 1�p < ∞ by (the

proof of) Lemma 6.1.4 in [17]. Set f (N) = ∑N
−N fj zj and w(N) = ef (N) ∈ W� for any Beurling
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weight �. If D
(N)
i denotes the Szegö function for w(N), then r(N) = D

(N)
i

D
(N)
i

= B(f (N)). Let A(N,n)

denote the Borodin–Okounkov operator (7.4) with r replaced by r(N). By (7.6)

‖A(N,n)‖1/2
l2+→l2+

�
(∑

m>n

(1 + m)|r(N)
m |2

)1/2

�

⎛⎝ ∑
m�0

(1 + m)|r(N)
m − rm|2

⎞⎠1/2

+
(∑

m>n

(1 + m)|rm|2
)1/2

.

The first term on the right converges to zero as N → ∞ by Proposition 7.2, and the second term
can be made small uniformly for n large. Thus, for any fixed �0 < 1, there exists N0, n0 such that

‖A(N,n)‖l2+→l2+ < �2
0 (7.9)

if N �N0 and n�n0. Hence for all N �N0 and n�n0 we have by (7.8)

�(N)
n−1 = −

(
r(N,n),

1

1 − A(N,n)
e0

)
l2+

, (7.10)

where r(N,n) = (r
(N)
n+l )l �0 and �(N)

n−1 is the (n−1)st Verblunsky coefficient for w(N). But for fixed
n, a simple computation shows that as N → ∞, r(N,n) → r(n) in H 1/2 ↪→ l2+, and in addition, by
(7.6), A(N,n) → A(n) in I1(l

2+) ⊂ L(l2+), the bounded operators on l2+. Finally, using (7.9), we
see that for all n�n0 the RHS of (7.10) converges to the RHS of (7.8). But as N → ∞ the LHS
of (7.10) converges to the LHS of (7.8) by Lemma 6.1.4(b) in [17]. This establishes (7.8) for w
with log w ∈ H

1/2
R and n�n0.

Remark. The reader may ask why we do not prove (7.8) directly from the RHP in Section 5 with
weight w, log w ∈ H

1/2
R , rather than proceeding by approximation as above. However, we only

know that w ∈ Lp(�) for 1�p < ∞, not in L∞(�). Thus the RHP is non-standard and requires
special (BMO) considerations, which we can, and do, avoid.

We will now show that
∑

n∈Z+ n |�n|2 < ∞. Note first from (7.6), that for n�n0

‖A(n)‖l2+→l2+ ��2, (7.11)

where

� ≡
⎛⎝∑

n�n0

(n + 1) |rn|2
⎞⎠1/2

< 1. (7.12)

Secondly, using formula (7.8) we obtain

�n−1 = −rn − (
r(n), (1 − A(n))−1 A(n) e0

)
l2+
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and therefore⎛⎝∑
n�n0

n |�n−1|2
⎞⎠1/2

�� +
⎛⎝∑

n�n0

n
∣∣(r(n), (1 − A(n))−1 A(n) e0

)
l2+

∣∣2⎞⎠1/2

(7.13)

�� +
⎛⎝∑

n�n0

n ‖r(n)‖2
l2+

‖(1 − A(n))−1 A(n) e0‖2
l2+

⎞⎠1/2

�� +
(

sup
n�n0

n ‖(1 − A(n))−1 A(n) e0‖2
l2+

)1/2

·
⎛⎝∑

n�n0

‖r(n)‖2
l2+

⎞⎠1/2

.

Obviously,∑
n�n0

∥∥r(n)
∥∥2

l2+
=
∑

n�n0

∑
j �0

|rn+j |2 �
∑

j �n0

(j + 1) |rj |2 = �2. (7.14)

Furthermore, by (7.11), for any n�n0

‖(1 − A(n))−1 A(n) e0‖2
l2+

�‖(1 − A(n))−1‖2
l2+→l2+

‖A(n) e0‖2
l2+

(7.15)

� 1

(1 − �2)2 ‖A(n) e0‖2
l2+

(7.16)

and also

n
∥∥A(n) e0

∥∥2
l2+

= n
∑
l �0

∣∣∣∣∣∑
m>n

rl+m rm

∣∣∣∣∣
2

�n
∑
l �0

(∑
m>n

|rl+m|2
)(∑

m>n

|rm|2
)

(7.17)

�n �2
∑
m>n

|rm|2 ��2
∑
m>n

m |rm|2 ��4. (7.18)

It follows from (7.16) and (7.18), that

sup
n�n0

n ‖(1 − A(n))−1 A(n) e0‖2
l2+

� 1

(1 − �2)2 �4. (7.19)

Combining (7.13), (7.14) and (7.19), it follows that⎛⎝∑
n�n0

n |�n−1|2
⎞⎠1/2

� �

1 − �2 . (7.20)

This completes the proof that the RHS of 7.1 ⇒ LHS of (7.1).

Acknowledgements

The work of the first author was supported in part by the NSF Grant DMS-0296084. The
second author would like to express his gratitude to the Wenner-Gren Foundations for their
financial support. He is also grateful for the hospitality and stimulating environment provided by
the Courant Institute. Both authors would like to thank Barry Simon for fruitful discussions.



P. Deift, J. Östensson / Journal of Approximation Theory 139 (2006) 144–171 171

References

[1] J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longest increasing subsequence of random
permutations, J. Amer. Math. Soc. 12 (4) (1999) 1119–1178.

[2] A.M. Borodin,A. Okounkov,A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator
Theory 37 (2000) 386–396.

[3] A. Borodin, A. Okounkov, G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math.
Soc. 13 (2000) 491–515.

[4] A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Springer, Berlin, 1999.
[5] M.J. Cantero, L. Moral, L. Velázquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle,

Linear Algebra Appl. 362 (2003) 29–56.
[6] K.M. Case, J.S. Geronimo, Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys. 20 (2)

(1979).
[7] K. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory, vol. 3,

Birkhäuser, Basel, 1981.
[8] P.A. Deift, Integrable Operators, M. Sh. Birman’s 70th anniversary collection, in: V. Buslaev, M. Solomjak, D.Yafaev

(Eds.), American Mathematical Society Translation Series, vol. 159, American Mathematical Society, Providence,
RI, 1999.

[9] P.A. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach, Courant Lecture Notes,
vol. 3, 1999.

[10] P.A. Deift, X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the
MKdV equations, Ann. Math. 137 (1993) 295–368.

[11] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
[12] A.S. Fokas, A.R. Its, A.V. Kitaev, Discrete Painleve’ equations and their appearance in quantum gravity, Comm.

Math. Phys. 142 (1991) 313–344.
[13] A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Differential equations for quantum correlation functions, Internat.

J. Modern Phys. B 4 (1990) 1003–1037 A.S. Fokas, V.E. Zakharov (Eds.), The Quantum Correlation Function as the
� Function of Classical Differential Equations, Important Developments in Soliton Theory, Springer, Berlin, 1993,
pp. 407–417.A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Differential equations for quantum correlation
functions, Internat. J. Modern Phys. B 4 (1990) 1003–1037

[14] K. Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003) 277–329.
[15] P. Nevai, V. Totik, Orthogonal polynomials and their zeros, Acta Sci. Math. 53 (1989) 99–104.
[16] L.A. Sakhnovich, Operators similar to unitary operators, Funct. Anal. Appl. 2 (1) (1968) 48–60.
[17] B. Simon, Orthogonal polynomials on the unit circle, part 1: classical theory, AMS Colloquium Series, vol. 54,

American Mathematical Society, Providence, RI, 2005.
[18] B. Simon, Orthogonal polynomials on the unit circle, part 2: spectral theory, AMS Colloquium Series, vol. 54,

American Mathematical Society, Providence, RI, 2005.
[19] B. Simon, Meromorphic Szegö functions and asymptotic series for Verblunsky coefficients, submitted.
[20] G. Szegö, Orthogonal polynomials, AMS Colloquium Series, third ed., vol. 23, American Mathematical Society,

Providence, RI, 1939, 1967.


